p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24.262C23, C23.330C24, C22.1032- 1+4, C22.1422+ 1+4, (C2×D4)⋊44D4, (C22×C4)⋊25D4, C23⋊Q8⋊5C2, C23⋊2D4⋊11C2, C22.1C22≀C2, C23.159(C2×D4), C2.29(D4⋊5D4), C2.19(D4⋊6D4), C23.8Q8⋊35C2, C23.10D4⋊20C2, C23.23D4⋊35C2, (C22×C4).797C23, (C23×C4).343C22, C22.210(C22×D4), C23.78C23⋊5C2, (C22×D4).127C22, (C22×Q8).420C22, C2.C42.91C22, C2.9(C22.31C24), C2.14(C22.26C24), (C2×C4⋊D4)⋊9C2, (C2×C4)⋊10(C4○D4), (C2×C4).315(C2×D4), (C22×C4○D4)⋊4C2, C2.18(C2×C22≀C2), (C2×C4⋊C4).216C22, C22.209(C2×C4○D4), (C2×C22.D4)⋊9C2, (C2×C2.C42)⋊30C2, (C2×C22⋊C4).120C22, SmallGroup(128,1162)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.262C23
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=g2=1, f2=c, eae=gag=ab=ba, ac=ca, ad=da, faf-1=acd, bc=cb, bd=db, geg=be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd, fg=gf >
Subgroups: 900 in 457 conjugacy classes, 120 normal (34 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C24, C2.C42, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4⋊D4, C22.D4, C23×C4, C23×C4, C22×D4, C22×D4, C22×Q8, C2×C4○D4, C2×C2.C42, C23.8Q8, C23.23D4, C23⋊2D4, C23⋊Q8, C23.10D4, C23.78C23, C2×C4⋊D4, C2×C22.D4, C22×C4○D4, C24.262C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22≀C2, C22×D4, C2×C4○D4, 2+ 1+4, 2- 1+4, C2×C22≀C2, C22.26C24, C22.31C24, D4⋊5D4, D4⋊6D4, C24.262C23
(1 40)(2 48)(3 38)(4 46)(5 42)(6 18)(7 44)(8 20)(9 55)(10 63)(11 53)(12 61)(13 60)(14 50)(15 58)(16 52)(17 34)(19 36)(21 51)(22 59)(23 49)(24 57)(25 47)(26 37)(27 45)(28 39)(29 64)(30 54)(31 62)(32 56)(33 41)(35 43)
(1 23)(2 24)(3 21)(4 22)(5 9)(6 10)(7 11)(8 12)(13 25)(14 26)(15 27)(16 28)(17 62)(18 63)(19 64)(20 61)(29 36)(30 33)(31 34)(32 35)(37 50)(38 51)(39 52)(40 49)(41 54)(42 55)(43 56)(44 53)(45 58)(46 59)(47 60)(48 57)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 27)(2 28)(3 25)(4 26)(5 36)(6 33)(7 34)(8 35)(9 29)(10 30)(11 31)(12 32)(13 21)(14 22)(15 23)(16 24)(17 44)(18 41)(19 42)(20 43)(37 46)(38 47)(39 48)(40 45)(49 58)(50 59)(51 60)(52 57)(53 62)(54 63)(55 64)(56 61)
(1 4)(2 3)(5 12)(6 11)(7 10)(8 9)(13 16)(14 15)(17 41)(18 44)(19 43)(20 42)(21 24)(22 23)(25 28)(26 27)(29 35)(30 34)(31 33)(32 36)(37 58)(38 57)(39 60)(40 59)(45 50)(46 49)(47 52)(48 51)(53 63)(54 62)(55 61)(56 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 11)(2 12)(3 9)(4 10)(5 21)(6 22)(7 23)(8 24)(13 36)(14 33)(15 34)(16 35)(17 45)(18 46)(19 47)(20 48)(25 29)(26 30)(27 31)(28 32)(37 41)(38 42)(39 43)(40 44)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)
G:=sub<Sym(64)| (1,40)(2,48)(3,38)(4,46)(5,42)(6,18)(7,44)(8,20)(9,55)(10,63)(11,53)(12,61)(13,60)(14,50)(15,58)(16,52)(17,34)(19,36)(21,51)(22,59)(23,49)(24,57)(25,47)(26,37)(27,45)(28,39)(29,64)(30,54)(31,62)(32,56)(33,41)(35,43), (1,23)(2,24)(3,21)(4,22)(5,9)(6,10)(7,11)(8,12)(13,25)(14,26)(15,27)(16,28)(17,62)(18,63)(19,64)(20,61)(29,36)(30,33)(31,34)(32,35)(37,50)(38,51)(39,52)(40,49)(41,54)(42,55)(43,56)(44,53)(45,58)(46,59)(47,60)(48,57), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,27)(2,28)(3,25)(4,26)(5,36)(6,33)(7,34)(8,35)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24)(17,44)(18,41)(19,42)(20,43)(37,46)(38,47)(39,48)(40,45)(49,58)(50,59)(51,60)(52,57)(53,62)(54,63)(55,64)(56,61), (1,4)(2,3)(5,12)(6,11)(7,10)(8,9)(13,16)(14,15)(17,41)(18,44)(19,43)(20,42)(21,24)(22,23)(25,28)(26,27)(29,35)(30,34)(31,33)(32,36)(37,58)(38,57)(39,60)(40,59)(45,50)(46,49)(47,52)(48,51)(53,63)(54,62)(55,61)(56,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,11)(2,12)(3,9)(4,10)(5,21)(6,22)(7,23)(8,24)(13,36)(14,33)(15,34)(16,35)(17,45)(18,46)(19,47)(20,48)(25,29)(26,30)(27,31)(28,32)(37,41)(38,42)(39,43)(40,44)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)>;
G:=Group( (1,40)(2,48)(3,38)(4,46)(5,42)(6,18)(7,44)(8,20)(9,55)(10,63)(11,53)(12,61)(13,60)(14,50)(15,58)(16,52)(17,34)(19,36)(21,51)(22,59)(23,49)(24,57)(25,47)(26,37)(27,45)(28,39)(29,64)(30,54)(31,62)(32,56)(33,41)(35,43), (1,23)(2,24)(3,21)(4,22)(5,9)(6,10)(7,11)(8,12)(13,25)(14,26)(15,27)(16,28)(17,62)(18,63)(19,64)(20,61)(29,36)(30,33)(31,34)(32,35)(37,50)(38,51)(39,52)(40,49)(41,54)(42,55)(43,56)(44,53)(45,58)(46,59)(47,60)(48,57), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,27)(2,28)(3,25)(4,26)(5,36)(6,33)(7,34)(8,35)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24)(17,44)(18,41)(19,42)(20,43)(37,46)(38,47)(39,48)(40,45)(49,58)(50,59)(51,60)(52,57)(53,62)(54,63)(55,64)(56,61), (1,4)(2,3)(5,12)(6,11)(7,10)(8,9)(13,16)(14,15)(17,41)(18,44)(19,43)(20,42)(21,24)(22,23)(25,28)(26,27)(29,35)(30,34)(31,33)(32,36)(37,58)(38,57)(39,60)(40,59)(45,50)(46,49)(47,52)(48,51)(53,63)(54,62)(55,61)(56,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,11)(2,12)(3,9)(4,10)(5,21)(6,22)(7,23)(8,24)(13,36)(14,33)(15,34)(16,35)(17,45)(18,46)(19,47)(20,48)(25,29)(26,30)(27,31)(28,32)(37,41)(38,42)(39,43)(40,44)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64) );
G=PermutationGroup([[(1,40),(2,48),(3,38),(4,46),(5,42),(6,18),(7,44),(8,20),(9,55),(10,63),(11,53),(12,61),(13,60),(14,50),(15,58),(16,52),(17,34),(19,36),(21,51),(22,59),(23,49),(24,57),(25,47),(26,37),(27,45),(28,39),(29,64),(30,54),(31,62),(32,56),(33,41),(35,43)], [(1,23),(2,24),(3,21),(4,22),(5,9),(6,10),(7,11),(8,12),(13,25),(14,26),(15,27),(16,28),(17,62),(18,63),(19,64),(20,61),(29,36),(30,33),(31,34),(32,35),(37,50),(38,51),(39,52),(40,49),(41,54),(42,55),(43,56),(44,53),(45,58),(46,59),(47,60),(48,57)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,27),(2,28),(3,25),(4,26),(5,36),(6,33),(7,34),(8,35),(9,29),(10,30),(11,31),(12,32),(13,21),(14,22),(15,23),(16,24),(17,44),(18,41),(19,42),(20,43),(37,46),(38,47),(39,48),(40,45),(49,58),(50,59),(51,60),(52,57),(53,62),(54,63),(55,64),(56,61)], [(1,4),(2,3),(5,12),(6,11),(7,10),(8,9),(13,16),(14,15),(17,41),(18,44),(19,43),(20,42),(21,24),(22,23),(25,28),(26,27),(29,35),(30,34),(31,33),(32,36),(37,58),(38,57),(39,60),(40,59),(45,50),(46,49),(47,52),(48,51),(53,63),(54,62),(55,61),(56,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,11),(2,12),(3,9),(4,10),(5,21),(6,22),(7,23),(8,24),(13,36),(14,33),(15,34),(16,35),(17,45),(18,46),(19,47),(20,48),(25,29),(26,30),(27,31),(28,32),(37,41),(38,42),(39,43),(40,44),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64)]])
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 2P | 4A | 4B | 4C | 4D | 4E | ··· | 4R | 4S | 4T | 4U |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 | 2+ 1+4 | 2- 1+4 |
kernel | C24.262C23 | C2×C2.C42 | C23.8Q8 | C23.23D4 | C23⋊2D4 | C23⋊Q8 | C23.10D4 | C23.78C23 | C2×C4⋊D4 | C2×C22.D4 | C22×C4○D4 | C22×C4 | C2×D4 | C2×C4 | C22 | C22 |
# reps | 1 | 1 | 2 | 4 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 4 | 8 | 8 | 1 | 1 |
Matrix representation of C24.262C23 ►in GL6(𝔽5)
1 | 4 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 3 |
0 | 0 | 0 | 0 | 4 | 2 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 4 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 1 | 0 | 0 |
0 | 0 | 2 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 4 | 0 | 0 | 0 | 0 |
2 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 4 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 2 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 3 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,4,4,0,0,0,0,0,0,4,1,0,0,0,0,0,1,0,0,0,0,0,0,3,4,0,0,0,0,3,2],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,4,4,0,0,0,0,0,0,3,2,0,0,0,0,1,2,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,2,0,0,0,0,4,4,0,0,0,0,0,0,2,0,0,0,0,0,4,3,0,0,0,0,0,0,4,2,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,3,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C24.262C23 in GAP, Magma, Sage, TeX
C_2^4._{262}C_2^3
% in TeX
G:=Group("C2^4.262C2^3");
// GroupNames label
G:=SmallGroup(128,1162);
// by ID
G=gap.SmallGroup(128,1162);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,253,120,758,723,184,675]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=g^2=1,f^2=c,e*a*e=g*a*g=a*b=b*a,a*c=c*a,a*d=d*a,f*a*f^-1=a*c*d,b*c=c*b,b*d=d*b,g*e*g=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,f*g=g*f>;
// generators/relations